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The numerical integration of the one-dimensional Schrodinger equation is considered. A 
new variable step method is presented within the “Canonical Functions” scheme, charac- 
terized namely by: (i) the replacement of the Schrijdinger equation by the “equivalent” 
integral equation; (ii) the representation of the wavefunction by a superposition of simple 
integrals; (iii) the definition of “Taylor Series like” difference equations. At each interval, an 
estimate of the step-size h is determined in order to obtain the desired local accuracy. For the 
practical case of a given potential function with polynomial interpolations, the step-size h is 
directly given by a simple formula depending on: (i) the potential function in the interval; 
(ii) the “initial values” of the wavefunction at the origin of the interval. This variable step 
method is applied to the Morse potential function used for the recent Raptis and Cash 
method (Comput. Phys. Commun. 36, 113 (1985)). For this application, the present method 
presents some advantages over the previous one. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

In the diatomic vibrational-rotational eigenvalue problem (as in other similar 
problems), one has to consider the numerical integration of the one-dimensional 
Schriidinger equation [ 11. 

According to the widely used Cooley method [2], the problem is reduced to the 
integration of the equation 

f’(r) = ( W) - El y(r) = f(r) y(r) (1) 

for a given potential function U(r) (where r is the internuclear distance), and a 
succession of trial values ,? of E in order to obtain a solution y(r) obeying 
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(i) the boundary conditions 

Y(O) = 0 (2) 

lim y(r)=0 (2’) r - 02 

(ii) the continuity condition for y(r) and y’(r) at any arbitrary point r0 
(O<r,< co). 

For each trial value E of E, many trial values of the “initial values” y,, y; (at 
r N 0 or at r N co) are sucessively used in order to assure the continuity of y(r) at a 
given point ro. Then other trial values I!? are successively used in order to assure the 
continuity of y’(r) at ro. In summary, the Cooley method is reduced to a sucession 
of one “elementary” operations, i.e., the integration of Eq. (1) for a given U(r), with 
a given E and given initial values y, and yb at a given point ro. 

While this method has been known for two decades and proved to be efficient in 
many practical applications, many papers still appear every year dealing with some 
details of the method [3], or looking to new other schemes [4-71. 

One of the last schemes presented (the “Canonical Functions” method [7]) has 
the advantage of dissociating the determination of the eigenvalue E from that of the 
eigenfunction y(r), by defining an “eigenvalue-function” F(E) related to the given 
potential function U(r), E being a variable parameter. The successive roots of the 
equation F(E) = 0 are the successive eigenvalues related to U(r). 

This method eliminates the explicit use of the eigencfunction (and the “initial 
values” problem), but makes use of the canonical functions a(r) and B(r) which are 
particular solutions of Eq. (1) with well-defined initial values. We deduce that the 
“canonical functions” method is reduced to the determination of a(r) and /3(r) for 
several values of E, i.e., to the integration of Eq. (1) for a given U(r) with a given E 
and given initial values (at an initial point ro). 

This overview of the Schooting method and the canonical functions method can 
be extended to many other methods; it neglects many important details, but it 
underlines the importance of the choice of a convenient difference equation for the 
numerical integration of the Schrbdinger equation. 

Among the large variety of difference equations, the Numerov difference equation 
[S] is the most used in diatomic problems. Yet in some specific cases, Runge-Kutta 
formulae [9], or other alternatives [lo] are used. 

In this trend to improve the accuracy of the numerical integration of the 
one-dimensional Schriidinger equation, we point out the recent important work of 
Raptis and Cash [ 111 who obtained good results by using a variable step method 
in order to reduce the “local truncation error” within pre-defined limits. 

The present work is inspired from the previous one. We present a variable step 
method along with a difference equation usually not used for the diatomic eigen- 
value problem, yet efficient and highly accurate. This method makes use of the 
“canonical functions” approach. 
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2. THE DIFFERENCE EQUATION 

2.1. We know that the Schrodinger equation (Eq. (1)) is equivalent to the 
integral equation [ 121 

y(r) = y(ro) + (r - ro) y’(ro) + I’ (r - t) f(t) y(t) dt 
ro 

(3) 

in the sense that any solution of the one is a solution of the other and vice versa; r. 
being an arbitrary origin (0 < r. < co). 

Furthermore, we know that the solution of Eq. (3) is given by a “superposition of 
integrals” of the form 

(4) 

with 

Hn(r)=/r (r-t)f(t) H,-,(t)dt (5) 

Ho(r) = bYro) + (r - ro) y’(roh (6) 

where the series (4) is proved to be absolutely and uniformly convergent [13]. 
This expression of y(r) can lead to the following difference equations: 

Y,=Yo+hYb+ f H,(h) 
n=l 

Y;=Yb+ f fuh), 
n=l 

with 

Y. = Are); 

Yl = Are + h); 

z,b = y’(ro) 

A = y’(ro + A) 

H,,(x)=S’:(x-f)f(t)H,-l(t)df (8) 
0 

Ho(x) = Yo + XYb 

x=r-ro; O<x<h 

(7) 

(7’) 

(9) 

and 

Hn(~)=j-~j-(t) H,p,(t)dt. 
0 

(10) 
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2.2. These difference equations cannot be considered of interest for 
numerical applications unless: (i) the potential U(x) (on the interval (0, h)) is given 
by a “convenient” function, for which the integral sign in H,(x) (Eq. (8)) is 
eliminated (U(x) is given, for example, by a combination of xm, or of sin ax, or eoX, 
or others...); (ii) the series in Eq. (7) (resp. Eq. (7’)) is “quickly” convergent, so one 
may replace Eqs. (7) and (7’) by 

YI”Yo+bYb+ f ff,(h) (11) 
n=l 

J4 = $2 + f K(h), (11’) 
n=l 

where N is a positive integer related to the required precision. 
Fortunately, in the diatomic eigenvalue problem, the potential may be given by 

an analytical function (Morse, Lennard-Jones, Dunham, . ..) or by a numerical table 
of the RKR-type (determined by the RKR method [14] or by a recent quantum 
method [15]). This RKR potential is usually determined by the coordinates of 
some points (turning points and/or others), with suitable interpolations and 
extrapolations, which usually are (or can be reduced to) polynomials. For these 
potentials, as well as for some well-known analytical potentials (Dunham, Morse, 
Lennard-Jones, . ..). we can write on the interval (0, h) 

U(x)= f ynxn; O,<X<h, (12) 
II=0 

where M is the degree of the given polynomial interpolation. 
In this case, the difference equations (Eqs. (11) and (11’)) are greatly simplified; 

they become 

y,=y,+hJ$+ f c,v (13) 
II=2 

y; 1: Jo+ .f nc,P’, (13’1 
II=2 

where the coefficients c, are given by the recursion formula 

(n+2)(n+l)c,+,= -EC”+ f: CmYnpm (14) 
PI-0 

with co = y,; c1 = &,. (For obvious reasons, we must always take N> M.) 

2.3. As we mentioned above, the difference equation (13) is the special 
case of Eq. (11) suitable for a potential with polynomial interpolations and 
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extrapolations. Other forms of the general difference equation (11) can be derived 
for other types of interpolations. 

For the present special case, one can notice that the difference equation (13) is 
nothing but the well-known Taylor series expansion of the solution of Eq. (1). To 
our knowledge, this expansion is not used for the diatomic eigenvalue problem. 
One may find many applications to some RKR potentials as well as to many Morse 
and Lennard-Jones functions [ 161. 

3. THE NEW VARIABLE STEP METHOD 

In the difference equation (13) derived in the previous section, a truncation error 
R, is omitted. According to the general formulation, we write 

N-l 
,~l=y,+hyb+ 1 c,h”+RN (15) 

n=2 

with 

RN= f c,H”. (16) 
lI=N 

If the step-size h is constant (or pre-determined), the choice of the integer N can 
be determined by the condition 

IC,@ GE, (17) 

where E is a chosen “tolerance.” 
Conversely, N may be fixed a priori, and h may be determined in order to have 

IRNI 6 E. (18) 

According to this condition, and to the convergence of the series (7), we 
obviously have 

R N+lGE 

and furthermore 

which leads to 

and finally 

h < (e’/l~,I)~‘~. (19) 
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For a given N and a given E, h is a function of the coefficient cN, i.e., of the initial 
values y,, yb on one hand, and of the potential function U(r) and the given value of 
E on the other hand (see the recursion formula (14)). The step-size h will therefore 
vary from one interval to another. 

Since we may take E as small as we desire, the variable step h can be given by 

h = (E*/Ic,&“‘+‘. (20) 

This value assures that R, obeys condition (18). 

4. THE NUMERICAL APPLICATION 

4.1. In order to test the validity of the present method, we choose to 
present the application to the Morse potential 

U(r) = D( 1 - exp( -a(r - r,)))*- D 

with re= 1.9975, a=0.711248, and D = 188.4355, in a.u. 
The main reason for this choice is the possibility of comparison of our results 

with those of Raptis and Cash [ 111 who used the same potential in their numerical 
applications. 

The other reasons for this choice are: 

(i) The exact vibrational eigenvalues E,M for the Morse potential are known, 
and one can compare the computed eigenvalue E; with the exact one for each 
vibrational level v. 

(ii) The exact value of the logarithmic derivative of the vibrational Morse 
wavefunction is known at r,: 1: = yL(r,)/y,(r,) [ 171. This offers a severe test of the 
computation of the canonical functions a and /I proper to the canonical functions 
method. 

(iii) The exact value of the vibrational Morse wavefunction y,“(r) is also 
known. This offers a direct test of the difference equations and the variable step 
method [18]. 

The vibrational eigenvalues E, are computed by using the variable step method 
described here along with the canonical functions scheme outlined in the Appendix. 

Within this frame, one has to compute the canonical functions a(E; r) and j?(E; r) 
(for a given value E) at several points r+ (for r > r,,) and r; (for r < r,,). 

At the starting point ro, one has to calculate the mesh-size h, from Eq. (20) and 
can deduce rl = r. + h, as well as cr(E; rl), fi(E; r,), a’(E, rl), and jI’(E; rl). This 
procedure is repeated at rl , where h, is calculated, then at r2 = rl + h,, etc. 

At each point ri, the determination of h from Eq. (20) implies that of c, for a 
given E and a given N; the choice of E and N will be discussed below. To determine 
cN, one has to make use of Eq. (14), i.e., to know c0 = y(r,) and c, = y’(r,). In the 
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present application, we use CI for y(r); so at r,,, we have c0 = 1 and c1 = 0 (see the 
Appendix for the initial values of a); at rl, we take c0 = a(E; rl) and ci = cr’(E; r,); 
and so on. We notice that one may use p instead of a in order to determine the 
step-sizes h,. 

In spite of this pre-determination of the step-size h at each interval, the present 
application follows the standard canonical functions scheme [7] outlined in the 
Appendix. We notice here that the determination of h, and that of c( and /?, is done 
simultaneously, in the same “run.” So the program gives, for any potential, the 
eigenvalues E,, E, , . . . . E,, . . . . along with the wavefunction logarithmic derivative 
I(E,) = y’(E,; r,,)/y(E,; r,); the same program may be easily adapted to compute 
the wavefunction y( E,.; r). 

4.2. We give in Table I the eigenvalue E, computed by the present method 
for the first 14 vibrational levels considered by Raptis and Cash [ 111. For each v, 
the Morse eigenvalues E;U = w,(v + l/2) - w,x,(v + l/2)’ (with w, = 2afi, 
U’J, = a*/19/) are given along with the discrepancy AE, = IE, - E,MI, for the 
“present method” (AEP”‘) and for the results of Raptis and Cash (AE,“c). The total 
number of steps I is also given for each level, along with the greatest step-size h. 

These computations were done on a personal computer (NewBrain AD) giving 
eight significant figures; so we took E = lo-’ for the determination of h for all the 
considered levels. 

TABLE I 

Computed Eigenvalues E,. for the Vibrational Levels of the Morse Potential 

0 - 178.798 538 2 0 13 238 0.428 0.08 
1 - 160.283 406 4 1 14 238 0.375 0.08 
2 - 142.780 060 0 2 15 238 0.351 0.08 
3 - 126.288 442 2 3 17 238 0.365 0.08 
4 - 110.808 572 2 6 19 238 0.349 0.08 
5 - 96.340 449 0 7 21 238 0.355 0.08 
6 - 82.884 074 0 10 22 238 0.377 0.08 
I - 70.439 445 0 11 23 238 0.416 0.08 
8 - 59.006 565 0 14 25 237 0.407 0.08 
9 -48.585 432 0 38 27 165 0.417 0.08 

10 -39.176046 0 22 28 176 0.466 0.08 
11 - 30.778 407 0 45 30 166 0.464 0.08 
12 -23.392 520” 0 35 31 170 0.535 0.08 
13 - 17.018 372 0 36 33 173 0.617 0.08 

“This value is different from that given in Ref. [ 111. 
Note. For each level u, the Morse eigenvalue Ef” is given (in a.u.) along with AE, = E, - Ef’ (in lo- 6 

a.u.) for the present method (AE,P”) and for that of Raptis and Cash [ 111 (AEfc). The number of steps I 
and the greatest step-size h are also given for both methods. 
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On each interval, one has to compute the coefficients c, used first to determine h, 
then used in the difference equations (13) (to determine c1 and /I). According to the 
recursion formula (14), c, depend on E and on the coefficients y,, of the potential U 
(see Eq. (12)). 

4.3. For the Morse potential function used in the present application, the 
coeffkients yn (on the interval (ri, ri+, )) are deduced from those of the expansion in 
Taylor series of some other functions. We write for the chosen interval 

(i) r=ri+x (O~xxd=ri+l-ri) 

(ii) U(x) = DZ*(x) 

Z(x) = 1 -AZ(X) 

z(x) = exp( -ax) 

with A = exp( - ar,). 

The function z(x) is expanded in the Taylor series 

z(x)= f 6,x”, 
n=O 

where 6, + , = -&,,/(n + 1) with 6, = 1. 
The function Z(x) can be written 

Z(x)= f A”X”, 
?I=0 

where do= 1 ---PIED, and A,, = -Ad,. 
Then the coefficients Y,, of the function U(X) = C,“=. y,,x” are deduced from A, by 

the relation yn=D~~=oA,A,-,. 

5. DISCUSSION 

5.1. The results presented in Table I show that: 

(i) The eigenvalues E,PM computed by the present method are equal to the 
Morse eigenvalues E,M within the computer precision (to eight significant figures). 
Those of Raptis and Cash Ef” are less precise. 

(ii) The number of intervals I”“’ used in the present method, increases with D 
(from Z= 13 for v = 0 to Z= 33 for 0 = 13); yet it stays clearly inferior-for every 
level- than that ZRC of Raptis and Cash. 

(iii) The maximum step-size h (for each level) varies with v for the present 
method, while it is constant for that of Raptis and Cash. I?” is always superior to 
ARC for all the levels. 
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Yet a weakness appears in the present method. Looking at the expression of h 
(Eq. (20)), one notices the dependence of h on E and N. While E must be taken, 
according to the theory, as small as possible, there is no theoretical indication for 
the choice of N. 

In the present numerical application, we took N = 25 (guided by some 
previous applications of the canonical functions used with constant h). We did then 
some tests (for few levels) by making N vary from 10 to 60 (with a given value of 
E). We noticed that 

(i) The values of c( and p, and of I= lim - cc/j? do not vary with N. 

(ii) When N increases, h increases and the number I of intervals decreases. 

(iii) The time t of one “run” (the integration of Eq. (1) with given E and given 
initial values) is practically independent from N, except when N is small 
(N = 15, 10, . ..) or big (N = 50, 60, . ..) where t is increased by a fraction of t. 

This point, concerning the pre-determination of N, is still under study. 

5.2. Another test is presented in Table II, where we give the values 
I+(E) = -lim,,, cl(E; r)//?(E; r) and E-(E) = -lim,,, a(E; r)//3(E; r), for two 
values of E: E = E,PM ( ei g envalue of the level u computed by the present method) 

TABLE II 

Computed Wavefunction Logarithmic Derivative I,, = y’(r,)/y(r,) at the Minimum rp 
of a Morse Potential 

" P I+ -P I--P I+ -IM I--P 

0 0.355 624 00 0” 0 0 0 
1 - 12.660 309 0 0 +3 -3 
2 7.970 171 3 0 0 f41 -18 
3 -1.1546894 0 0 +32 -15 
4 - 15.838 390 0 0 -3 +l 
5 28.462 3 11 0 0 -111 +36 
6 5.413 083 3 0 0 -248 +71 
I - 2.289 492 9 0 0 -259 +70 
8 - 12.540 568 0 0 -82 f20 
9 - 67.286 859 0 0 - 3934 f814 

10 35.841 979 0 0 -776 +135 
11 12.869 458 0 0 -402 +59 
12 5.576 495 3 0 0 -2168 +273 
13 1.005 265 4 0 0 - 2296 + 246 

a The deviation of I from IM at the eighth significant figure. 
Note. The two limits I+ = -lim,,, cz(r)/P(r) and I- = -lim,,,a(r)//?(r) are compared to the 

Morse value b’ for two different values of E: E = E PM (for the present method), and E= ERC (for that of 
Raptis and Cash [ 111). 
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and E = E,RC (corresponding value found by Raptis and Cash). The values of I + 
and I- are then compared (for each u) to the Morse value IM (logarithmic 
derivative of the Morse wavefunction [ 171). This comparison is done when yO = rp. 

From this table, one may notice that for E = EPM, we have E+ = I- = Z”, or 
lim, + m -a//I = lim, _ O - U/B = y’(r,)/y(r,) which is theoretically true (see the 
Appendix). This result confirms the validity of the computed E,P”. 

The previous remark may be considered as follows: since EPM = EM, the differen- 
ces I+ - lM and I- - IM “measure” the error introduced by the computation of I+ 
(and I-), i.e., the error caused by the difference equations used in the computations 
of o! and 8, and any error in the determination of E,. The excellent agreement 
between I + , I-, and lM (for E = EPM) and the rather less good agreement between 
I+, I-, and I”(for E = ERC) give an advantage to the present method over that of 
Raptis and Cash. 

5.3. The test of the wavefunction described in Ref. [18], was also applied 
and showed an excellent agreement between the Morse wavefunction and that 
computed by the present method (by integrating Eq. (1) with E,PM and the initial 
values deduced from I(Ef”)). 

5.4. Finally, the following practical remarks should be made concerning the 
computer program: 

(i) The programming effort is reduced practically to that of the recursion for- 
mula (Eq. (14)) used to determine the step-size on one side, and the canonical 
functions a and p (then their limits I+ and I- ) on the other side; the program is 
quite simple (and available from the authors upon request). 

(ii) The same canonical functions algorithm was used with the present 
variable-step method along with other difference equations (Numerov [8]; 
Runge-Kutta [9]) in order to evaluate the efficiency of the present method. 

The consumption in computer time for the present method exceeds (slightly) that 
for the Numerov difference equation, but it is roughly half the time used with the 
Runge-Kutta difference equations. This result is similar to that obtained with the 
conventional constant-step method (see The Appendix). 

(iii) The method used here to compute the eigenvalues of a bound state is adap- 
table to that of the eigenfunctions. 

(iv) This same method was already used to compute the phase shift of an elastic 
collision; yet this last application presents some particularities related to the boun- 
dary conditions of the solution and not to the used difference equation (with or 
without local control error). This application will be the subject of a forthcoming 
paper. 
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6. CONCLUSION 

A new variable-step method for the numerical integration of the one-dimensional 
Schrodinger equation was presented. In its general formulation, the new method is 
inscribed within the “Canonical Functions” scheme usually used for the diatomic 
problem. 

Special emphasis was made on the practical case of diatomic potential function 
with polynomial interpolations (and extrapolations). The step-size h is given by a 
simple expression depending, for a given interval, on the potential function on this 
interval, and on the “initial values” of the wavefunction at the origin of the interval. 

This method was applied to the Morse potential function already used by Raptis 
and Cash. The computed eigenvalue (for all the vibrational levels) is equal to the 
exact one, up to eight significant figures (the computer precision). 

APPENDIX: 
OUTLINE OF THE"~ANONICAL FUNCTIONS"APPROACH 

TO THE DIATOMIC EIGENVALUE PROBLEM 

For a given potential U(r) and a given value of the “parameter” E, the canonical 
functions cc(E; r) and fi(E; r) are particular solutions of Eq. (1) with the initial 
values [7] 

cc(E; ro) = 1; a’( E; ro) = 0 

P(E; To) = 0; /?‘(E; ro) = 1 

with 0 < r,, < co. 
The general solution of Eq. (1) is 

.Y(E; r) = y(E; ro) 4E; r) + y’(E; ro) P(E; r). 

This solution is the eigenfunction if it obeys the boundary conditions (Eq. (2)): 
y(E; 0) = y(E; GO) = 0. 

For an arbitrary value of E, one may consider the two “limits” 

I+(E) = lim - a(& r)/P(E; r) 
r-00 

I-(E) = ho - cc(E; r)/jl(E; r) 

and the “eigenvalue function” F(E) defined by 

F(E)=/+(E)-Z-(E). 

When E = E, (eigenvalue), we have 

l+(E,) = l-(E,) = .Y’(J%; rd/AE,; rd. 
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So F(E) = 0 is the “eigenvalue-equation” having for successive solutions (when E 
varies from zero to the dissociation D) the successive eigenvalues E,, E,, E,, . . . . 

This treatment is explicitly independent of the wavefunction and implies 
numerically the computation of a(E; r) and /?(E; r), i.e., the numerical integration of 
Eq. ( 1) for a given U(r) and a given E, with given initial values at rO. 

This numerical integration starts at r = rO, with r > rO. It computes a, /3, and 
-et/P. It is stopped when -a/b reaches the constant limit l+(E). It is then repeated 
for r < r. and stopped when -a//l reaches the constant limit l-(E). Then it looks 
for the zeros of the function F(E) = Z+(E) - l-(E). The details of this numerical 
scheme are given in Ref. [7]. 

This canonical functions approach for the eigenvalue problem was already used 
with different types of difference equations: The Runge-Kutta equations [9], the 
Numerov equation [8], and the Taylor series expansion Eqs. (13) and (14) 
(limited to the case defined in Eq. (12)). While the latter is highly accurate [ 161, its 
consumption in computer time is much less than that of the first one 
(Runge-Kutta), but slightly exceeds that of Numerov’s [7]. 
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